Sequence-Specific Intramembrane Proteolysis: Identification of a Recognition Motif in Rhomboid Substrates

نویسندگان

  • Kvido Strisovsky
  • Hayley J. Sharpe
  • Matthew Freeman
چکیده

Members of the widespread rhomboid family of intramembrane proteases cleave transmembrane domain (TMD) proteins to regulate processes as diverse as EGF receptor signaling, mitochondrial dynamics, and invasion by apicomplexan parasites. However, lack of information about their substrates means that the biological role of most rhomboids remains obscure. Knowledge of how rhomboids recognize their substrates would illuminate their mechanism and might also allow substrate prediction. Previous work has suggested that rhomboid substrates are specified by helical instability in their TMD. Here we demonstrate that rhomboids instead primarily recognize a specific sequence surrounding the cleavage site. This recognition motif is necessary for substrate cleavage, it determines the cleavage site, and it is more strictly required than TM helix-destabilizing residues. Our work demonstrates that intramembrane proteases can be sequence specific and that genome-wide substrate prediction based on their recognition motifs is feasible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharpening rhomboid specificity by dimerisation and allostery.

In this issue of The EMBO Journal, mechanistic analyses of substrate cleavage by rhomboid intramembrane proteases suggest that catalytic efficiency towards natural, transmembrane substrates is allosterically stimulated by initial substrate interaction with an intramembrane exosite, whose formation depends on rhomboid dimerisation. In the realm of intramembrane proteolysis, dimerisation and allo...

متن کامل

Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate.

Intramembrane proteolysis is a core regulatory mechanism of cells that raises a biochemical paradox of how hydrolysis of peptide bonds is accomplished within the normally hydrophobic environment of the membrane. Recent high-resolution crystal structures have revealed that rhomboid proteases contain a catalytic serine recessed into the plane of the membrane, within a hydrophilic cavity that open...

متن کامل

Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity.

Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinan...

متن کامل

Structural basis for intramembrane proteolysis by rhomboid serine proteases.

Intramembrane proteases catalyze peptide bond cleavage of integral membrane protein substrates. This activity is crucial for many biological and pathological processes. Rhomboids are evolutionarily widespread intramembrane serine proteases. Here, we present the 2.3-A-resolution crystal structure of a rhomboid from Escherichia coli. The enzyme has six transmembrane helices, five of which surroun...

متن کامل

Structural and Functional Determinants of γ-Secretase, an Intramembrane Protease Implicated in Alzheimer’s Disease

Alzheimer's disease is the most common form of neurodegenerative diseases in humans, characterized by the progressive accumulation and aggregation of amyloid-beta peptides (Abeta) in brain regions subserving memory and cognition. These 39-43 amino acids long peptides are generated by the sequential proteolytic cleavages of the amyloid-beta precursor protein (APP) by beta- and gamma-secretases, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009